0 Daumen
893 Aufrufe

Aufgabe:

Die Gleichgewichtskonstante für die Reaktion von Stickstoff und Sauerstoff zu Stickstoffmonooxid hat den Wert \( 1,1 \cdot 10^{-2} \). Die beiden Elemente werden bei einer bestimmten Temperatur mit der gleichen Konzentration von 1 mol/l zur Reaktion gebracht. Berechnen Sie die Konzentration des Stickstoffmonooxids im Gleichgewicht ?


Problem/Ansatz:

Danke im Voraus !

Avatar von

1 Antwort

0 Daumen

Hi, hier chemweazle,

Zu

Berechnen Sie die Konzentration des Stickstoffmonooxids im Gleichgewicht?


Aufgabe:Die Gleichgewichtskonstante für die Reaktion von Stickstoff und Sauerstoff zu Stickstoffmonooxid hat den Wert \( 1,1 \cdot 10^{-2} \). Die beiden Elemente werden bei einer bestimmten Temperatur mit der gleichen Konzentration von 1 mol/l zur Reaktion gebracht. Berechnen Sie die Konzentration des Stickstoffmonooxids im Gleichgewicht ?Problem/Ansatz:Danke im Voraus !

Reaktionsgleichung

N2(g) + O2(g)2 NO(g)

$$K_{gl} = \dfrac{[NO]^{2}}{[N_{2}]\cdot [O_{2}]} = 1,1\cdot 10^{-2}$$


Anfangskonzentrationen, Einwaagekonzentrationen, Startkonzentrationen vor Beginn der Reaktion

[N2]0 = 1 mol / l und [O2]0 = 1 mol / l

Wenn vom Stickstoff x mol mit x mol Sauerstoff pro Liter reagieren, so enstehen 2 x mol pro Liter Stickstoffmonoxid. Dann verbleiben noch bis zum Ende der Reaktion, dem Gleichgewichtszustand, jeweils (1 - x ) mol /l Stickstoff und (1 - x ) mol /l Sauerstoff übrig.

N2(g) + O2(g) 2 NO(g)
(1 - x ) mol /l (1 - x ) mol /l 2 x mol / l


Eingesetzt in den Term der Gleichgewichtskonstanten
$$K_{gl} = \dfrac{(2 x)^{2}\cdot mol^{2}\cdot l^{2}}{( 1- x )\cdot ( 1 - x )\cdot mol^{2}\cdot l^{2}} = 1,1\cdot 10^{-2}$$
$$K_{gl} = \dfrac{4 x^{2}}{( 1- x )^{2}} = 0,011$$

4 x2 = 0,011 * [ 1 - 2 * x + x2 ]

3,989 x2 + 0,022 * x - 0,011 ⇒

$$x^{2} + \frac{0,022}{3,989}\cdot x - \frac{0,011}{3,989}$$
p-q-Form der Gleichung

x2 + p* x + q


p ≈ 0,0055 q ≈ - 0,00276 p2 = 0,00275 = q
(p/2)2 = 0,0000075625 = 7,5625 * 10-6

$$x_{1/2} = - \frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

$$x_{1/2} = - 0,00275 \pm \sqrt{7,5625\cdot 10^{-6} + 0,00276} = - 0,00275 \pm \sqrt{0,0027675625}$$

x1/2 = - 0,00275 ± 0,0526076278

Bem.: Man könnte in der Diskriminante, dem Term unter der Quadratwurzel, den Summand (p/2)2 auch vernachlässigen, denn er beträgt nut 7,5625 * 10-6 und ist 3 Zehnerpotenzen kleiner als der Summand q mit q = 0,00276.

x1 = - 0,00275 + 0,0526076278 = 0,0498576278 ≈ 0,05

x2 < 0, diese Lösung ist physikalisch sinnlos

x = ≈ 0,05 mol / l

Die Gleichgewichtskonzentrationen, abgekürzt mit [ ]gl, lauten:

[N2]gl = [N2]0 - x[O2]gl = [O2]0 - x
( 1 - 0,05 ) mol / l = 0,095 mol /l( 1 - 0,05 ) mol / l = 0,095 mol /l
[NO]gl = 2 * x = 2 * 0,05 mol / l = 0,1 mol / l

Avatar von 6,4 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Chemielounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community